Hematopoietic Stem Cell Transplant

Karen Anderson, MN, RN, OCN
University of Washington Medical Center

Objectives

- Define HSCT
- Provide overview of HSCT process
- Discuss acute complications of HSCT
- Discuss chronic/late complications of HSCT

Indications for HSCT

- Malignant diseases:
 - Acute and Chronic Leukemia
 - Hodgkin’s Disease and Non-Hodgkin’s lymphoma
 - Myelodysplastic Syndromes
 - Multiple Myeloma
 - Selected solid tumors

- Non-malignant diseases:
 - Hematologic Disorders (Aplastic Anemia, Fanconi’s Anemia, Sickle Cell Anemia)
 - Congenital Immunodeficiencies (SCID, Wiskott Aldrich Syndrome)
 - Inborn Errors of Metabolism (Hurler’s Syndrome, Gaucher Disease)
 - Autoimmune Diseases (ex: Systemic Sclerosis, Multiple Sclerosis)

Approaches to Transplant

- Autologous
- Standard allogeneic
 - related or unrelated
- Non-myeloablative (allogeneic)

- Tandem
- Syngeneic
- Haploidentical
Stem Cell Sources

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Marrow (BM)</td>
<td>Good source of stem cells</td>
<td>Anesthesia & surgical risks for donor</td>
</tr>
<tr>
<td></td>
<td>Lower rate of infections day + 100 to +365</td>
<td>Longer time to engraftment than PBSC</td>
</tr>
<tr>
<td>Peripheral Blood (PBSC)</td>
<td>Most abundant source of stem cells</td>
<td>Long-term effect of growth factors on healthy donors unknown</td>
</tr>
<tr>
<td></td>
<td>Faster Engraftment</td>
<td>Slightly higher risk of aGVHD & cGVHD</td>
</tr>
<tr>
<td></td>
<td>Lower rate of infections to Day +100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>More graft versus leukemia effect than BM or UCB</td>
<td></td>
</tr>
<tr>
<td>Umbilical Cord Blood (UCB)</td>
<td>Readily available & lower costs HLA mismatch more acceptable</td>
<td>Delayed engraftment</td>
</tr>
<tr>
<td></td>
<td>Less risk of GVHD</td>
<td>Smaller “dose” of stem cells</td>
</tr>
</tbody>
</table>

Autologous HSCT: An Overview

- **Theory behind therapy:** The stem cell “rescue” of the ablated marrow allows for high dose chemo/and or radiation to treat the disease.
- **Approach often utilized for certain types of lymphomas, multiple myeloma, selected solid tumors and non-malignant conditions**
- Requires collection and cryopreservation of one’s own stem cells
- Small risk of autologous GVHD, aka “pseudo-GVHD”

Autologous HSCT: Mobilization and Apheresis

- **Mobilization:** A technique used to increase the number of circulating hematopoietic stem cells from the bone marrow into the bloodstream
 - High dose chemotherapy + G-CSF ± plerixafor
 - G-CSF
- **Apheresis:** The method for stem cell collection using a dialysis-type machine with cell separators that are programmed to collect stem cells

Allogeneic HSCT: An Overview

- **Theory behind Therapy:**
 - **Standard allogeneic:** The stem cell “rescue” of the ablated marrow and “re-set” of the immune system by the donor’s stem cells allows for a combination of the chemotherapy and/or radiation therapy plus the stem cells that create a graft versus tumor effect to cure the disease.
 - **Nonmyeloablative allogeneic:** The donor stem cells provide a graft versus tumor effect that cures the disease.
Allogeneic HSCT: An Overview

- More common approach for acute leukemias. Also utilized to treat various hematological and immunological disorders, lymphomas, multiple myeloma, selected solid tumors
- Non-self source of stem cells: sibling, family member, unrelated donor, umbilical cord blood
- Immunosuppression necessary to prevent graft rejection and GVHD

HSCT Process

1. Planning phase
2. Preparing for transplant
3. Conditioning
4. Transplant
5. Awaiting Engraftment
6. Post-engraftment recovery
7. Long-term follow-up

Planning Phase

- Patient & Donor Planning
 - Oncologist reviews transplant with patient & family
 - Referral to transplant center for consultation
 - Address fertility
 - HLA type patient & siblings
 - Search the donor registries
- Other Preparations
 - Assess finances (insurance coverage or pay cash)
 - Select transplant center (statistics on NMDP website)
 - Select a caregiver
 - Make plans for relocation if necessary

HLA Typing

Degree of compatibility between donor and patient

- Minimum match recommendations:
 - 6/8 loci for PBSC and BM donors
 - 4/6 loci for UCB
- 25% chance that each sibling will be an HLA-match
- 70% of people do not have suitable family donor
- Median search time for a PBSC or BM donor is 51 days, and 2 weeks for UCB
Preparative Phase

- **Medical Evaluation**
 - Blood Work, Bone Marrow Aspirate & Biopsy, Lumbar Puncture, CT, PET, MRI
 - Oral exam and gynecologic exam
 - Nutritional, Psychosocial, and Spiritual Assessment
 - Chest X-ray, PFTs and Cardiac Studies

- **Family Conference & Informed Consent Process**
 - Discussion of protocol and plan, risks and benefits
 - Sign consents

- **Preparation of the Family and Caregiver**
 - Orientation to center; Caregiver classes & support groups

- **Central Line Placement**

Conditioning

- **Chemotherapy**
 - Myeloablative
 - Myelosuppressive

 Common Drugs: Melphalan, Fludarabine, Cyclophosphamide, Etoposide, Busulfan

- **Radiation**
 - Total Body Irradiation
 - “Mini” TBI

Transplant

- Stem cell infusion administered like an RBC transfusion

- **Cryopreserved**
 - Preserved with DMSO
 - Can cause hemolysis
 - Causes garlic breath
 - Transfusion reactions

- **Fresh**

Awaiting Engraftment

- Nausea, Vomiting, Diarrhea

- Mucositis
 - May effect the entire length of GI tract
 - May need PCA & TPN for some length of time

- Infections

- Hepatic Sinusoidal Obstruction Syndrome (SOS)
 - Risk factors include TBI, Cytoxan, prior liver disease
 - Can be fatal

- Engraftment syndrome
 - Fever and rash presents around time of engraftment, resembles GVHD
Allogeneic HSCT: Post Engraftment Recovery

- Patients are closely followed at the transplant center for several months
 - Acute GVHD and infection are major concerns
 - Seen daily to once/week for medical evaluation and blood tests
 - Nursing management of symptoms
 - Infusion therapy as needed
 - At day +80, patients are completely evaluated for disease state and complications and prepared for discharge home

Graft vs. Host Disease (GVHD)

- Donor T lymphocytes (the graft) recognize the antigens and cells in the transplant recipient (the host) as foreign and mount an immunologic attack

- Three conditions must be present
 - Graft must have sufficient number of competent cells
 - Host must have antigens that are not present in the graft
 - Host must be incapable of mounting an effective response to destroy the transplanted cells

Predictive Factors for aGVHD

- Donor/Host Factors
 - HLA disparity
 - Sex mismatch (especially female to male)
 - Age of donor and recipient

- HSC Source
 - PBSC > BM > UCB

- Immunomodulation
 - Omission of adequate aGVHD prophylaxis
 - TBI recipients

Clinical Features of Acute GVHD

- Skin (most common)
 - Maculopapular rash, often beginning with palmar/plantar surfaces and extending to the face, abdomen and trunk
 - Sunburned appearance to desquamation and loss of skin integrity

- Gut
 - Profuse, watery diarrhea with anorexia, nausea and vomiting
 - Diarrhea with intestinal bleeding and crampy abdominal pain to ileus

- Liver
 - Elevated alkaline phosphatase and bilirubin
 - RUQ pain, hepatomegaly and jaundice to ascites and encephalopathy
Prevention of aGVHD
- Highest degree of histocompatibility from donor (when multiple donors are available)
- Prophylactic immunosuppression with methotrexate, cyclosporine, mycophenolate mofetil, tacrolimus alone or in combination
- Selective T-cell depletion

Treatment of aGVHD
- Primary Therapy
 - Prednisone 1-2mg/kg/day followed by taper after response (may be given as IV methylprednisone)
- Secondary Therapy
 - Monoclonal antibodies
 - ATG
 - Sirolimus
 - PUVA (skin) or ECP (skin, liver and gut)

Prognosis of aGVHD
- Predicted by grade of aGVHD and response to initial therapy
- Poor responders to treatment have a high-risk of non-relapse mortality rate by one year

Allogeneic HSCT: Long-term Follow-Up
- Follow guidelines from transplant center about safe living with impaired immune function
- Late complications
 - Chronic GVHD
 - Late infectious complications
 - Pulmonary complications – Bronchiolitis obliterans, pulmonary fibrosis
 - Neurological complications
 - Psychological complications
 - Cataracts
 - Sexual disorders (ex: dry vaginal mucosa) and impaired fertility
 - Orthopedic complications – Fragile joints due to steroids
 - Secondary malignancy
Infections and HSCT

- **Pre-engraftment**: HSV, gram negative bacilli, staphylococcus epidermidis, GI-tract streptococci, candida, aspergillus
- **Early Engraftment**: candida, staphylococcus epidermidis, aspergillus, CMV, pneumocystis jiroveci
- **Late Phase**: CMV, VZV, encapsulated bacteria, aspergillus, pneumocystis jiroveci

Immune reconstitution after HSCT

- Innate immunity usually returns by day 100
- Adaptive Immunity:
 - CD4+ helper T-cells numbers may take months to return to normal levels
 - Serum immunoglobulins may take months to years normalize and gain full functionality
 - Immunosuppressants and chronic GVHD further impair immune reconstitution

Chronic GVHD

- Chronic graft versus host disease (cGVHD) is a syndrome caused by donor immune competent T cells recognizing and mounting an immune response against host cells which differ by histocompatibility antigens
- Resembles autoimmune or collagen vascular disorder

Predictive factors for cGVHD

- Previous aGVHD
- PBSC
- Older donor or recipient
- HLA disparity
Clinical Manifestations of Chronic GVHD

- Oral Symptoms
- Skin
- Nails
- Scalp & Body Hair
- Eyes
- Genitalia
- GI Tract
- Liver
- Lung
- Muscles/Fascia/Joints
- Hematopoietic/Immune

Treatment of cGVHD

- **Primary**
 - Prednisone 1mg/kg/day with a slow taper after improvement usually in combination with:
 - Daily cyclosporine or
 - Daily tacrolimus

- **Salvage**
 - Methotrexate
 - Mycophenolate Mofetil
 - Sirolimus
 - Tacrolimus
 - Azathioprine
 - Infliximab
 - Pentostatin
 - PUVA (cutaneous aGVHD)
 - ECP (cutaneous and liver aGVHD)

Supportive Care in cGVHD

- Infection prophylaxis
- Symptom palliation
 - Manage dry skin and protect from sun
 - Artificial tears
 - Oral care
 - Gynecology consult
- Nutritional intervention
- PT and OT
- Massage
- Psychosocial support

Prognosis of cGVHD

- Mortality in cGVHD is largely attributed to infection.

- Major morbidity is often present with extensive chronic GVHD and requires long-term therapy.
Factors influencing HSCT Outcomes

- Type of disease
- Disease status at time of transplant
- Co-morbidities
- Severity of GVHD

Web resources for outcome statistics:
- www.bmtinfonet.org
- www.marrow.org
- www.cibmtr.org

Summary

- HSCT indicated for a variety of malignant and non-malignant conditions, may be only potentially curative option for some conditions
- Major risks associated with HSCT in the acute and late phases are infection and GVHD
- Management of treatment side effects for transplant survivors can persist for years

Resources:

- National Marrow Donor Program
 www.marrow.org

- “Understanding Cancer” topics
 www.cancer.gov

- Seattle Cancer Care Alliance
 www.seattlecca.org

Questions?

Karen Anderson, MN, RN, OCN
andersk@u.washington.edu
References

http://www.bbmt.org/article/PIIS1083879105006312/fulltext