Blood Component Therapy

- Blood Components
- Special Processing/Attributes
 - Irradiation
 - Leukoreduction
 - CMV Negative/CMV Safe
 - Washing
 - Volume Reduction
- Patient Safety
 - Type and Crossmatch Verification
 - Unit Verification

Composition of Blood

- ~ 55-60% Plasma
- ~ 40-45% Formed Elements:
 - Red Blood Cells (RBC)
 - Leukocytes (WBC)
 - Platelets

Whole Blood Collection
Blood Processing Laboratory

Whole Blood Components

- RBC
- Platelet
- Plasma
- WBCs
- Cryoprecipitate

Pooled Platelets
(a.k.a. 4, 5, or 6 pack)

Pooling Platelets into One Bag
Apheresis Collection

- Platelets
- Granulocytes
- Plasma
- RBCs

Apheresis Platelets

- One unit equivalent to pool of 4-6 units of whole blood platelet concentrates

- Type
 - Apheresis Platelets
 - HLA Matched Apheresis Platelets (MAPs)

Red Blood Cells

Indications

- Symptomatic anemia
- Severe bleeding
- General Guidelines:
 \[\text{Hgb} / \text{Hct} \]
 - <7 / 21%: Likely required
 - 7-10 / 21-30%: Varies with clinical condition
 - >10 / 30%: Unlikely required

Red Blood Cells

Therapeutic Effect

- Average size Adult (per unit)
 \[\uparrow \text{Hgb} \sim 1 \text{ gm/dL} = \uparrow \text{Hct} \sim 3\% \]
- Dose: number of units given depends on clinical situation
Platelets – Indications

- Prevention or treatment of bleeding due to thrombocytopenia and/or platelet dysfunction
- Prevent bleeding in patients with bone marrow failure:
 - <10,000/µl: clinically stable pts
 - <20,000/µl: pts with ↑ risk factors
- Active bleeding or surgery:
 - <50,000/µl: general med/surg patients
 - <100,000/µl: eye surgery, neurosurgery, massive hemorrhage, severe vascular injury

Platelets Therapeutic Effect

- Apheresis Platelets
 - ↑ ~ 30,000/µl per unit
- Pooled Platelets
 - ↑ ~ 7,000/µl per each unit in pool
 - Example – 5 unit pool expect increment of 35,000/µl
- Adult dose - usually:
 - One apheresis platelet or 4-6 pooled platelets

Fresh Frozen Plasma Indications

INR > 1.6:
- To treat active bleeding
- Or prevent bleeding during surgical or invasive procedures

Fresh Frozen Plasma Therapeutic Effect

- Adult: One unit ↑ most coagulation factors ~ 2.5%
- Dose based on clinical condition and underlying disease process
 - Adult dose: 10-15mL/kg (3-6 units)
Cryoprecipitate

Indications

- Hypofibrinogenemia
 (< 100 mg/dL)

Therapeutic Effect

- 1 pool (6 units/pool):
 - ↑ fibrinogen ~ 50 mg/dL
- Adult Dose:
 - 1-2 units per 10kg (1 or 2 pools)

Cryoprecipitate = Fibrinogen

Granulocytes - Indications

- **Preparation**
 - Collected by apheresis machine
 - Always Irradiated
- **Indications - Severe neutropenia with:**
 - Life-threatening bacterial or fungal infection not responsive to antimicrobial therapy
 - Neonates with sepsis
Granulocytes
Therapeutic Effect

- Dose
 - Pediatrics: max 20mL/kg/day
 - Adults: 1 unit/day
- May or may not see increase in WBC count

Irradiation Process

- HOW
 - Gamma Irradiator
- EFFECT - Inactivates Lymphocytes
 - Alters the genetic material
 - Prevents replication and ability to attack the recipient’s tissue

Whole Blood Components

- RBC
- Platelet
- Plasma
- WBC
- Cryoprecipitate

Note: Granulocytes ALWAYS IRRADIATED WBCs

Irradiation - Purpose

- Prevent Transfusion-Associated Graft versus Host Disease
Transfusion-Associated Graft Versus Host Disease

- Similar to GVHD seen in BM/Stem Cell transplant recipients
- Immunocompromised patients do not destroy the infused lymphocytes in the blood component
 - Lymphocytes engraft and proliferate
 - Attack host tissue

Transfusion-Associated Graft Versus Host Disease

- Lymphocytes launch attack against
 - Skin, Liver, Gut
 - Bone Marrow

- Clinical symptoms present 8-12 days post-transfusion
 - Fever
 - Skin - skin rash
 - Liver - elevated LFTs, hepatitis
 - Gut - diarrhea, anorexia, nausea/vomiting
 - Bone marrow - bone marrow failure (pancytopenia)

Transfusion-Associated Graft Versus Host Disease - Outcome

- Outcome: ~ 90% mortality
 - Infectious complications
 - Bleeding complications
 - Death typically occurs 3-4 weeks post-transfusion
- No effective treatment
- Prevention is a must!

TA-GVHD – Skin Rash
Transfusion-Associated Graft Versus Host Disease

- Patients with competent immune systems at risk for TA-GVHD
 - * Components from blood relatives
 - * HLA matched components
 * ALWAYS irradiate above component types for ALL recipients

Irradiation – Indications (see handout)
- Hematopoietic stem cell (HSC) transplant recipients (allogeneic, autologous/candidates
- HSC donors if allogeneic transfusion must be given prior to completing the harvest
- Aggressive chemotherapy/radiotherapy/T-cell immunosuppression
- T-Cell Immune Deficiency
- Hodgkin's disease
- Patients who have had Fludarabine therapy
- Leukemia
- Lymphoproliferative Disorders
- Neonates
- Intrauterine / neonatal exchange transfusion
- Transfusions from family members or HLA-selected donors

Leukoreduction Process

- HOW
 - Pass blood component through a Leukoreduction filter
 - Apheresis machine during collection

- Effect
 - Majority of the leukocytes are removed

Whole Blood Components

- RBC
- Platelet
- Plasma
- WBCs
 - 4 - 6 pooled

Note: Granulocytes NEVER Leukocyte Reduced WBCs

6 pooled
Leukoreduction – Purpose

- Reduce unwanted effects caused by WBCs and their by-products released during storage
 - Prevent Febrile Non-Hemolytic Transfusion Reactions
 - Prevent Alloimmunization
 - Use as substitute for CMV negative components to prevent CMV transmission

Leukoreduction

- Prevent recurrent Febrile Nonhemolytic Transfusion Reactions (FNHTR)

 - Cause – not completely understood
 - Antibody mediated
 - Patient antibodies react with infused WBCs
 - WBCs breakdown during storage
 - Cytokines released into the component

Leukoreduction

- Help prevent Alloimmunization/Platelet Refractoriness

 - Alloimmunization
 - Development of patient antibodies against donor HLA antigens
 - WBCs contain human leukocyte antigens (HLA)
 - Recipients exposed to donor’s WBCs through transfusion
 - Can develop antibodies to the foreign HLA antigens

Leukoreduction

- Use of Leukoreduced components

 - Significantly decrease the development of HLA antibodies
 - Significantly decrease the incidence of platelet refractoriness
Alloimmune Platelet Refractoriness

- Patients with HLA antibodies can become refractory to platelet transfusions
 - Platelets express HLA class I antigens on their surface
 - The infused platelets will be destroyed by the HLA antibodies

- Difficult to maintain an adequate platelet count

Multiple Non-Leukoreduced Transfusions

- HLA Class I
- HLA Class II
- Donor White Blood Cell

HLA Antibody Development – 2 to 4 weeks later

- HLA Class I
- HLA Class II
- Donor White Blood Cell
- Recipient anti-HLA antibody
- Donor Platelet
- Transfused Platelet

Alloimmune Platelet Refractoriness

- Multiple antibodies to different HLA antigens via multiple transfusions with non-LR products
- Premature removal by the spleen
- No increase in platelet count

Platelet refractoriness due to alloimmunization against HLA antigens
Alloimmune Platelet Refractoriness

- Poor platelet count increment at 1 hour post transfusion
 - Poor increment ~ < 5,000
 - Normal increment ~ 30,000 +

- Poor increments on at least two occasions in the absence of the following:
 - DIC, Sepsis, High Fever, ITP, Splenomegaly, Bleeding

HLA Matched Platelets

- Donor’s HLA typing is matched to patient’s HLA typing (HLA A, B)
- Apheresis platelets are collected from matched donor
- Initial order often requires 48 hours notice
- Resource limited by donor pool

Leukocyte Reduction

- Reduce rate of HLA alloimmunization in organ transplant patients/candidates
 - Renal
 - Heart
 - Lung

- Risk of transplant rejection due to HLA antibodies

Leukoreduction

- Create a CMV “Safe” Component to help prevent CMV transmission
CMV (Cytomegalovirus)

- Herpes virus
- CMV lies dormant in tissues and circulating leukocytes of infected individuals
- ~ 50% of population in WA is CMV positive
- Poses little problems to those with competent immune systems - most have no history of illness

CMV Neg/Safe Components

- Purpose – Prevent primary CMV infection in immunocompromised CMV-negative patients
- Serious complications from primary CMV infection
 - CMV-associated pneumonia, myocarditis, retinitis, hepatitis, gastroenteritis

CMV Safe Components

- CMV transmission via transfusion – reduced by use of either:
 - CMV Negative Components
 - Leukoreduced Components
- AABB:
 - Laboratory and clinical data support conclusion that LR reduces Transfusion Transmitted-CMV to a level at least equivalent to that of CMV-negative components

CMV Safe Indications (see handout)

- CMV negative patients:
 - Hematopoietic stem cell (HSC) transplant recipients
 - Solid Organ Transplant recipients from CMV neg donor
 - Potential HSCT or Organ Transplant candidates
 - AIDS/HIV infected recipients
 - Congenital Immune Deficiency
CMV Safe Indications (cont.)

- Regardless of CMV status of the mother or patient:
 - Premature/Low birth weight infants (< 1200-1500 g), Infants under 4 months old
 - Intrauterine transfusions
 - Exchange transfusions in newborns

Washing Blood Components

- How
 - Plasma is removed and cells are resuspended in NS

- Effect
 - Removes the donor plasma, volume is reduced
 - Adverse Effect of washing - Cell loss
 - Platelets / RBCs - loss of ~ 20% of the cells

- Components
 - RBCs and Platelets

Washed Red Blood Cell Unit

Washing - Indications

- History of anaphylactic reaction to blood components

- * Recurrent moderate allergic reactions not made tolerable by pre-medications
 - * Volume reduction without washing may be effective
Volume Reduction

• How
 – Component is centrifuged
 – Majority of plasma removed

• Effect
 – Plasma proteins/cytokines removed
 – Volume reduced to ~ 100 ml (or other volume)

• Components
 – Platelets
 – Granulocytes

• Purpose - Prevent various adverse reactions

Volume Reduction - Indications

• Extremely volume sensitive patients at risk for volume overload

• ABO incompatible single donor platelets or granulocytes

• Recurrent allergic reactions not made tolerable by pre-medications
 – If not successful, consider washing

• Recurrent febrile reactions not prevented by leukoreduction
 – If not successful, consider washing

Patient Safety

• Verification of Type and Crossmatch Sample

• Verification of unit prior to transfusion

Verification of PSBC Blood Samples (Type and Crossmatch, Type and Screen, Hold)

Verified by TWO Staff at BEDSIDE:
Patient Name, MRN and Birth date

ARMBAND
Must Match

LABEL on TUBE

PSBC REQUISITION
Must Match

(label at bedside immediately after draw, sign, add date/time)
2 Person BEDSIDE CHECK

- Informed Consent
- Check component against MD's order
- Involve patient, ask patient to state name and birth date, verify against armband
- Compare items shown below, must be identical
- Compare patient's blood type on trans report with unit type to ensure they are compatible
- Check compatibility testing date/time, if performed
- Visual Inspection
- Check boxes - sign tag

Reference Information

- Special Attributes Indications Sheet
- ABO/Rh Compatibility Chart
- Component Therapy Guidelines Table
- Transfusion Reaction Table

Conclusion

- Nurse plays a key role in administration of a safe and effective transfusion
- Understanding appropriate indications for components and special attributes will help ensure that the recipient receives the right blood component
Resources

- Institution’s Policies and Procedures
- Transfusion Safety Officer, Mary Grabowski
 Pager 206-969-5222 or marygr@psbc.org
- Puget Sound Blood Center Lab (206) 292-6525, #3