Principles of Cancer Treatment
Juanita Madison, RN, MN, AOCN
Oncology Clinical Nurse Specialist
Seattle Cancer Care Alliance

Objectives
- Describe the principles of cancer treatment
 - Surgery
 - Chemotherapy
 - Biotherapy & Targeted Therapy
 - Complementary and Alternative Medicine

Cancer Treatment Modalities
- Surgery
- Chemotherapy
- Biotherapy & Targeted Therapy
- Radiation Therapy
- Hematopoietic Stem Cell Transplant
- Complementary and Alternative Medicine (CAM) Therapies

Cancer Treatment Modalities
- Surgery
- Chemotherapy
- Biotherapy & Targeted Therapy
- **Radiation Therapy**
- **Hematopoietic Stem Cell Transplant**
- Complementary and Alternative Medicine (CAM) Therapies
Surgery in Cancer Therapy

Role of Cancer Surgery

- Establish tissue diagnosis
- Determine stage of disease
- Curative treatment
- Preventive treatment
- Palliative treatment

Establishing Tissue Diagnosis

- Tumor sample obtained to confirm diagnosis and to determine specific type of cancer (histology)
- Variety of biopsy techniques available
 - Provide sufficient tissue for pathologic and histologic diagnosis

Surgery to Treat Disease

Curative Treatment

- Resection of primary tumor to provide curative results.
- May need neoadjuvant or adjuvant therapy for optimum results.
- Localized tumors resected with adequate margins (i.e. lobectomy, mastectomy, hysterectomy)

Preventive Treatment

- Prophylactic surgery to reduce risk of cancer in high-risk patients
 - Ulcerative colitis: Colon cancer – colectomy
 - BRCA mutations
 - Breast cancer – bilateral mastectomies
 - Ovarian cancer – bilateral salpingo-oophorectomy
 - MEN2A, MEN2B mutations
 - Multiple endocrine neoplasia and thyroid carcinoma - thyroidectomy

Surgery to Treat Disease

- **Palliative Therapy:**
 - Promote comfort & QOL without goal of curing disease
 - Requires assessment of the relative risk-to-benefit ratio
 - Examples include:
 - Resection of primary tumor to alleviate pain or bleeding
 - Bowel resection for relief of obstruction
 - Bone stabilization

Role of Nursing & Surgical Team

- Expert assessment
- Psychosocial support
- Education
- Symptom management
- Prevention of complications

Chemotherapy

- **Cell Life Cycle**
 - **G-0 Phase (G = Gap)**
 - Resting (cells not committed to cell division)
 - **G-1 Phase**
 - Enzymes produced in preparation for DNA synthesis & RNA synthesis
 - **S Phase (S = Synthesis)**
 - DNA synthesized inside the nucleus
 - **G-2 Phase**
 - RNA & protein synthesis occurs, DNA synthesis ends
 - **M Phase (M = Mitosis)**
 - Cellular division

Action of Antineoplastic Drugs

- Alter cellular activity during one or more phases of cell cycle
- Affects *both* normal & malignant cells

Classification of Chemotherapy

<table>
<thead>
<tr>
<th>Phase of Action During Cell Cycle</th>
<th>Pharmacologic Classifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Cycle Specific</td>
<td>Alkylation agents</td>
</tr>
<tr>
<td>Cell Cycle Non-specific</td>
<td>Nitrosureas</td>
</tr>
<tr>
<td></td>
<td>Antitumor antibiotics</td>
</tr>
<tr>
<td></td>
<td>Antimetabolites</td>
</tr>
<tr>
<td></td>
<td>Plant Alkaloids (Mitotic inhibitors)</td>
</tr>
<tr>
<td></td>
<td>Vinca alkaloids</td>
</tr>
<tr>
<td></td>
<td>Taxanes</td>
</tr>
<tr>
<td></td>
<td>Epipodophyllotoxins</td>
</tr>
<tr>
<td></td>
<td>Topoisomerase I inhibitors</td>
</tr>
</tbody>
</table>

Phase of Action During Cell Cycle

- Cell Cycle Specific agents
- Cell Cycle *Non*-specific agents

Cell Cycle Specific Agents

- Exerts effect only in specific phases of cell cycle
- Most effective against rapidly proliferating (cycling) cells
- Cell kill dependent on schedule (duration & timing rather than dose)
Cell Cycle Non-Specific Agents

- Affect cells in all phases of the cell cycle (including G0).
- Both proliferating and nonproliferating cells are killed.
- Cell kill dependent on total dose rather than schedule.
- Combined with cell cycle-specific agents.

Pharmacologic Classifications

Cell Cycle Non-specific

- Alkylating agents
- Nitrosoureas
- Antitumor antibiotics

Cell Cycle Specific

- Antimetabolites
- Plant Alkaloids (Mitotic inhibitors)
- Vinca alkaloids
- Taxanes
- Topoisomerase inhibitors

Alkylating Agents

- Cell cycle non-specific
- Break DNA helix, interfere with DNA replication
- Examples of alkylating agents:
 - Cyclophosphamide (Cytoxan)
 - Ifosfamide (Ifex)
 - Cisplatin (Platinol)
 - Carboplatin (Paraplatin)
 - Oxaliplatin (Eloxatin)
 - Temozolomide (Temodar)

Alkylating Agents Toxicities

- Hematopoietic
 - Myelosuppression
- GI
 - Nausea/vomiting
- Reproductive
 - Azospermia, amenorrhea
- Integumentary
 - Alopecia
- Carcinogenic
 - Secondary malignancies
- Hemorrhagic cystitis
 - Ifosfamide, cyclophosphamide
- Neuropathy
 - Cisplatin analogs
- Hypersensitivity
 - Carboplatin (after 6-7 doses)
Nitrosureas

- Cell cycle non-specific
- Breaks DNA helix, interferes with DNA replication
- Cross blood-brain barrier

Examples of Nitrosureas:
- Carmustine (BICNU)
- Lomustine (CeeNu)
- Streptozocin (Zanosar)

Nitrosureas Toxicities

- **Hematopoietic**
 - Delayed myelosuppression
 - Nadir 4-6 weeks after therapy starts
- **GI**
 - Severe nausea/vomiting

Antitumor Antibiotics

- Cell cycle non-specific (most agents)
- Binds with DNA, inhibits DNA & RNA synthesis

Examples of antitumor antibiotics
- Actinomycin D (dactinomycin, Cosmegen)
- Bleomycin (Blenoxane)
- Mitomycin (Mutamycin)
- Mitoxantrone (Novantrone)
- Anthracycline Antitumor antibiotics
 - Daunorubicin (Daunomycin)
 - Doxorubicin (Adriamycin)
 - Epirubicin (Elence)
 - Idarubicin (Idamycin)
 - Liposomal doxorubicin (Doxil)
 - Liposomal daunorubicin (DaunoXome)

Antitumor Antibiotics Toxicities

- **Hematopoietic**
 - Myelosuppression (all drugs except Bleomycin)
- **GI**
 - Nausea/vomiting
 - Stomatitis, mucositis
- **Reproductive**
 - Gonadal suppression
- **Integumentary**
 - Alopecia
 - Vesicants (except Bleomycin, Mitoxantrone, and liposomal anthracyclines)
- **Cardiotoxicity**
 - Anthracycline antibiotics (dose dependent)
- **Pulmonary fibrosis**
 - Bleomycin
Common Chemotherapy Agents

<table>
<thead>
<tr>
<th>Phase of Cell Cycle</th>
<th>Class</th>
<th>Common Agents</th>
<th>Common Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonspecific Agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkylating Agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifosfamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboxyplatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboplatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temozolomide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrosoures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmustine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomustine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antitumor Antibiotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinomycin D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleomycin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitomycin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitozantrone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracytine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capecitabine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pemetrexed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gemcitabine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pharmacologic Classifications

Cell Cycle Specific Agents

- **Antimetabolites**
 - Cell cycle specific (S Phase)
 - Mimics & incorrectly substitutes for metabolites (nutrients) needed for cellular function (e.g. folate)
 - **Antimetabolite examples**
 - Azacitidine (Vidaza)
 - Cytosine arabinoside (Cytarabine/Ara C)
 - Fluorouracil (5-FU)
 - Capecitabine (Xeloda)
 - Methotrexate (Mexate)
 - Pemetrexed (Almita)
 - Gemcitabine (Gemzar)

- **Plant Alkaloids (Mitotic inhibitors)**
 - Vinca alkaloids
 - Taxanes
 - Epipodophylotoxins
 - Topoisomerase I inhibitors

Antimetabolite Toxicities

- **Hematopoietic**
 - Myelosuppression
- **GI**
 - Nausea, vomiting
 - Mucositis/stomatitis
 - Diarrhea
- **Integumentary**
 - Capecitabine: "Hand/foot syndrome" (palmar-plantar erythrodysesthesia)
 - 5FU: photosensitivity
- **Ocular toxicity**
 - Ara-C high-dose: keratitis
 - 5FU: photosensitivity

Plant Alkaloids (Mitotic Inhibitors)

- Vinca alkaloids
- Taxanes
- Epipodophylotoxins

Vinca Alkaloids

- Acts in late G2 & M phase
- Prevents formation of mitotic spindle (prevents cell mitosis)

Examples of Vinca Alkaloids
- Vinblastine (Velban)
- Vincristine (Oncovin)
- Vinorelbine

Vinca Alkaloid Toxicities

- **Hematopoietic**
 - Myelosuppression (except vincristine)
- **GI**
 - Nausea/vomiting (except vincristine)
- **Integumentary**
 - All are vesicants
 - Alopecia
- **Neurotoxicity**
 - Sensory-motor peripheral neuropathy
 - Constipation (autonomic neuropathy)
Epipodophyllotoxins

- Interferes with topoisomerase II enzyme reaction
- Acts in late G2 & S phase
- **Examples of Epipodophyllotoxins:**
 - Etoposide (VP-16, VePesid)
 - Teniposide (VM-26, Vumon)

Epipodophyllotoxin Toxicities

- **Myelosuppression**
- **GI**
 - Nausea/vomiting
 - Mucositis (high-dose etoposide)
 - Diarrhea (high-dose etoposide)
- **Cardiovascular**
 - Hypotension if infused too rapidly

Taxanes

- Inhibits cell division in G2 & M phase
- Promotes early microtubule assembly and prevents disassembling, arresting mitosis
- **Examples of Taxanes:**
 - Docetaxel (Taxotere)
 - Paclitaxel (Taxol)
 - Paclitaxel Protein-bound particles (Abraxane)

Taxane Toxicities

- **Hematopoietic**
 - Myelosuppression
- **GI**
 - Nausea/vomiting
- **Integumentary**
 - Alopecia
 - Vesicants (paclitaxel & docetaxel classified by ONS)
- **Neurologic**
 - Sensory-motor peripheral neuropathy
 - Arthralgia & myalgias
- **Hypersensitivity reactions**
 - Paclitaxel & docetaxel
Camptotecans (Topoisomerase I inhibitors)

- Cell cycle phase specific
- Acts in S phase to prevent unwinding of DNA strand (by inhibiting topoisomerase I)

Examples of Camptotecans
- Irinotecan (Camptosar)
- Topotecan (Hycamtin)

Camptotecan (Topoisomerase I Inhibitor) Toxicities

- Hematopoietic: Myelosuppression
- GI: Early diarrhea (cholinergic – reversed with atropine), Late diarrhea (motility)
- Integumentary: Alopecia

Common Chemotherapy Agents

<table>
<thead>
<tr>
<th>Phase of Cell Cycle</th>
<th>Class</th>
<th>Common Agents</th>
<th>Common Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Cycle Specific</td>
<td>Antimetabolites</td>
<td>Azacitidine (Vidaza)</td>
<td>Hematopoietic, GI, Integumentary</td>
</tr>
<tr>
<td></td>
<td>Vinca Alkaloids</td>
<td>Vinblastine (Velban)</td>
<td>Hematopoietic, Neurologic</td>
</tr>
<tr>
<td></td>
<td>Epipodophyllotoxins</td>
<td>Etoposide (VP-16)</td>
<td>Hematopoietic, GI, Integumentary, Neurologic</td>
</tr>
<tr>
<td></td>
<td>Taxanes</td>
<td>Docetaxel (Taxotere)</td>
<td>Hematopoietic, GI, Integumentary, Neurologic, Hypersensitivity</td>
</tr>
<tr>
<td></td>
<td>Camptotecans</td>
<td>Irinotecan (Camptosar)</td>
<td>Hematopoietic, GI, Integumentary</td>
</tr>
</tbody>
</table>

Hormonal Agents

Interfere with protein synthesis & alter cell metabolism by changing cells' hormonal environment

- **Antiandrogens (nonsteroidal)**
 - Bicalutamide (Casodex)
 - Flutamide (Eulexin)

- **Antiandrogens (nonsteroidal aromatase inhibitor, reversible)**
 - Anastrozole (Arimidex)
 - Letrozole (Femara)

- **Antiandrogens (nonsteroidal aromatase inhibitor, irreversible)**
 - Exemestane (Aromasin)
 - Tamoxifen (Nolvadex)

- **Antiandrogens (receptor antagonist)**
 - Fulvestrant (Faslodex)

- **Antiandrogens (steroidal aromatase inhibitor, irreversible)**
 - Estrogens
 - Estradiol (Estrace)
 - Estramustine (Emcyt)
 - Estrogen (Menex)

- **Luteinizing hormone-releasing hormone analog**
 - Goserelin acetate (Zoladex)
 - Leuprolide acetate (Lupron)
Routes of Chemotherapy Administration

- Intra-arterial
- Oral
- Subcutaneous
- Intrathecal/intraventricular
- Intraperitoneal
- Intrapleural
- Intravesicular
- Intravenous

Oral

Advantage:
- Convenience
- Ease and portability
- Increase sense of independence

Disadvantage:
- Difficulties with adherence
- Inconsistency of absorption
- Potential drug-herb-diet interactions
- Adherence
- Cost/reimbursement

SC or IM Injection

Advantages
- Ease of administration
- Decreased side effects

Disadvantages
- Inconsistency of absorption
- Requires adequate muscle mass & tissue absorption

Nursing implications
- Wear appropriate PPE
- Monitor Platelet count and ANC
- Assess previous injection site for signs and symptoms of infection or bleeding

Intrathecal/Intraventricular

Advantage
- Consistent drug level in CSF
- Bypasses the blood-brain barrier
- Sample CSF
- Administer opiates and antibiotics

Disadvantage
- Requires lumbar puncture or surgical placement
- Requires a physician or specially trained RN

Intraperitoneal

Advantages
- Provides direct exposure
- Bypasses the cellular enclosure of the peritoneal cavity
- Allows instillation of radioactive or colloid materials
- Allows for cyclic treatments

Disadvantage
- Requires placement of peritoneal catheter or port
- Requires small enough tumor volume

Intravenous

Advantages
- Consistent absorption
- Required for vesicant

Disadvantages
- Requires nursing/patient time
- Interferes with patient’s activities

Potential complications
- Infection
- Phlebitis
- Infiltration
- Extravasation
- Local discomfort

Principles of Cancer Treatment

Why is most chemotherapy administered in cycles?

- For example:
 - Chemotherapy administered on day 1, repeated every 3 weeks for 6 cycles
 - Chemotherapy administered on day 1 & day 8, repeated every 3 weeks for 6 cycles

Intrapleural

Advantage
- Scleroses the pleural lining preventing recurrence of effusions

Disadvantage
- Requires insertion of chest tube
- Must be administered by a physician

Potential complications
- Pain
- Infection
Principles of Cancer Treatment: Cell Kill Hypothesis

A given dose kills a constant proportion of a tumor cell population (rather than a constant number of cells).

Implications of Cell Kill Hypothesis

- Early diagnosis & start to treatment is (obviously) helpful.
- Treatment must continue past the time when cancer cells can be detected using conventional treatment.
- **On time, full dose treatment** required to ensure sufficient log-kill obtained (curative tumors).

Factors Affecting Outcomes

<table>
<thead>
<tr>
<th>Tumor-Related</th>
<th>Patient-Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth Fraction of Tumor</td>
<td>Performance status</td>
</tr>
<tr>
<td>Tumor burden</td>
<td>Bone Marrow Capacity</td>
</tr>
<tr>
<td>Type of cancer</td>
<td>Liver Function</td>
</tr>
<tr>
<td>Stage of disease</td>
<td>Kidney Function</td>
</tr>
<tr>
<td>Drug Resistance</td>
<td>Other Co-Morbidities</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
</tbody>
</table>

Combination Chemotherapy

- Combine drugs with different mechanisms of action.
- Increases proportion of cells killed at any one time.
- Reduces drug resistance.
- Must have proven efficacy as single agents with minimally overlapping organ toxicity.
- Uses drug synergy to maximize effects.
Goals of Cancer Therapy

- Prevention
- Cure
- Control
- Palliation

Chemotherapy Treatment Terms

Adjuvant Therapy
- Therapy given after the primary treatment modality such as surgery
- Example: adjuvant chemotherapy following lumpectomy for breast cancer
- **Rational for adjuvant therapy:**
 - Reduce risk of recurrence by eliminating small sites of disease or microscopic disease

Neoadjuvant Therapy
- Use of one or more treatment modalities prior to the primary treatment (i.e. chemotherapy prior to surgery)
- **Rational for neoadjuvant therapy:**
 - Decrease tumor size for surgical removal (shrink tumor prior to removal)
 - Evaluate effectiveness of chemotherapy (before surgery)
 - Shrink the tumor prior to removal

Hazardous Drug Safe Handling

Drugs defined as hazardous if they exhibit one or more of the following characteristics:

- Carcinogenicity
- Tetratogenicity or developmental toxicity
- Reproductive toxicity
- Organ toxicity at low doses
- Genotoxicity

Principles of Safe Handling

- Personal protective equipment
- Preparation in biologic safety cabinet with vertical laminar airflow
- Label as hazardous drugs
- Safe techniques during storage, transport, administration
Chemotherapy Dosing

- **Fixed dosing**: mg
- **Weight based dosing**: mg/kg
- **Body surface area (BSA) based dosing**: mg/m²
- **Area under the curve (AUC)**: Carboplatin
 - Calculation includes renal function

Verification of Dose Calculation

- Requires complete prescriber order
 - Height, weight, BSA or AUC, & total calculated dose
- Two chemotherapy-competent individuals (nurse and/or pharmacist), in addition to prescriber, independently double-check dosage calculations

Immediate Complications of Cytotoxic Therapy

- **Extravasation**
 - Vesicants
 - Irritant
- **Flare reaction**
- **Hypersensitivity reaction**
- **Anaphylaxis**

Chemotherapy Summary

- **Mechanisms of action**:
 - Interferes with DNA
 - Blocks cell replication in dividing cells (leading to cell death)
- **Affects**
 - Both normal and malignant cells
- **Chemotherapy toxicities related to effect on**:
 - Normal, frequently dividing cells
 - **Hematopoietic** (bone marrow suppression)
 - **GI mucosa** (nausea, vomiting, diarrhea)
 - **Reproductive** (amenorrhea, azoospermia)
 - **Integumentary** (alopecia)
 - **Drug-specific organ toxicities**
 - **Cardiac** (e.g. anthracycline antitumor antibiotics cardiomyopathy)
 - **Pulmonary** (e.g. Bleomycin pulmonary fibrosis)
 - **Neurons** (e.g. peripheral neuropathies)
Chemotherapy Summary
- Administered by multiple routes
- Typically administered over 4-6 “cycles”
- Classified as hazardous agents
 - Require special handling and use of personal protective equipment
- Most agents dosed according to body surface area
- Requires special training to:
 - Verify dose calculations
 - Safely handle & administer
 - Monitor, assess, and provide nursing actions to manage side effects

Biotherapy & Targeted Therapies

Biotherapy
- Use of agents:
 - Derived from biologic sources
 - That affect biologic responses.
 - Therapy that capitalizes on the use of natural body proteins and their functions to fight cancer.

Types of Biotherapy
- **Cytokines**
 - Interferons
 - Interleukins
 - Hematopoietic growth factors
 - A.K.A.: colony-stimulating factors or “CSF’s”
- **Targeted Therapies**
 - Monoclonal antibodies (injected agents)
 - Small Molecules (oral agents)
- **Antiangiogenesis agents**
 - Monoclonal antibody
 - Oral agents

References:
Cytokines

- Cytokines are a broad class of protein cell regulators produced by the immune system.
- Most cytokines possess multiple effects.
- Cytokines include:
 - Interferons
 - Interleukins
 - Hematopoietic growth factors

Interferons

- Actions:
 - Antiviral (inhibit viral replication)
 - Antiproliferative (prevent proliferation of tumor cells)
 - Immunomodulatory (modulate immune response of host)
- Examples:
 - Interferon alfa-2a (Roferon-A®)
 - Interferon alfa-2b (Intron A®)
- Side Effects:
 - Fever, chills, headache, N/V, diarrhea, fatigue, depression, anorexia, confusion, myelosuppression, injection site erythema

Interleukins

- Stimulate activation of immune cells (T and B cells, NK cells, LAK cells, tumor-infiltrating lymphocytes).
- Examples:
 - Aldesleukin (IL-2, Proleukin®)
 - Oprelvekin (IL-11, Neumega®)
- Side Effects:
 - Fever, chills, headache, N/V, diarrhea, myelosuppression, cardiac changes, capillary leak syndrome

Hematopoietic Growth Factors

- Stimulates the differentiation, proliferation, maturation, and functioning of hematopoietic cells.
- **Erythropoietic stimulating agents:**
 - Stimulate red blood cell production
 - Epoetin alfa (ProCrit®), Darbepoetin (Aranesp®)
- **Granulocyte colony stimulating factors (G-CSF):**
 - Regulates production of neutrophils
 - Filgrastim (Neupogen®), pegfilgrastim (Neulasta™)
- **Granulocyte macrophage colony stimulating factor (GM-CSF):**
 - Regulates differentiation neutrophils, monocytes, macrophages & dendritic cells
 - Sargramostim (Leukine®)
Targeted Therapies

- Advances in molecular biology led to development of “targeted therapies”
- Two types
 - Monoclonal antibodies
 - Small molecular inhibitors
 - Novel new agents
 - Oral therapies

Targeted Therapies

- Cellular growth, function, & apoptosis are regulated by complex network of biochemical & molecular signals
- Referred to as “cell signaling”
- “Signal transduction” is generation of a signal from either
 - Outside the cell (growth factors and growth factor receptors)
 - Inside the cell (tyrosine kinase inhibitors)
- Produces signaling cascade that travels down a pathway to the cell nucleus

Monoclonal Antibodies

- Antibodies cloned from a single antibody
- Recognize and bind to only one tumor associated antigen
- Highly specific proteins

Monoclonal Antibodies

<table>
<thead>
<tr>
<th>MOAB</th>
<th>TARGET</th>
<th>DISEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab (Rituxan®)</td>
<td>CD20</td>
<td>Non-Hodgkin’s Lymphoma</td>
</tr>
<tr>
<td>Trastuzumab (Herceptin®)</td>
<td>HER2</td>
<td>Breast</td>
</tr>
<tr>
<td>Bevacizumab (Avastin®)</td>
<td>VEGF</td>
<td>Multiple types (colorectal, NSCLC, etc)</td>
</tr>
<tr>
<td>Cetuximab (Erbitux®)</td>
<td>HER1/EGFR</td>
<td>Colorectal cancer Head & neck cancer</td>
</tr>
<tr>
<td>Alemtuzumab (Campath®)</td>
<td>CD52</td>
<td>Chronic lymphocytic leukemia</td>
</tr>
<tr>
<td>Panitumumab (Vectibix®)</td>
<td>EGFR</td>
<td>Colorectal cancer</td>
</tr>
</tbody>
</table>

Courtesy of Brenda Keith, RN, MN, AOCN®
Small Molecule Inhibitors

<table>
<thead>
<tr>
<th>Name</th>
<th>Target</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lapatinib</td>
<td>Tyrosine kinase inhibitor of EGFR and HER2</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Nilotinib</td>
<td>BCR-ABL kinase</td>
<td>CML</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>Multikinase inhibitor</td>
<td>HCC, RCC</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>Multikinase inhibitor</td>
<td>GIST, RCC</td>
</tr>
</tbody>
</table>

Antiangiogenesis Agents

- **Action:** Target the neovasculature of tumors to halt their growth, prevent tumor invasion, and preclude metastatic spread.

- **Examples:**
 - Bevacizumab *(Avastin®)*
 - Thalidomide *(Thalomid®)*
 - Lenalidomide *(Revlimid®)*

Biotherapy Summary

- **Agents**
 - Derived from biologic sources or
 - That affect biologic responses

- **Mechanisms of action**
 - Vary depending on classification of agents
 - Directed towards identifiable molecular targets on tumor cells

Complementary and Alternative Therapies in Cancer Care

Complementary and Alternative Medicine (CAM)

Complementary Methods
- Supportive methods used in addition to (complementary to) conventional treatments (such as radiation, chemotherapy, & surgery)

Alternative Therapies
- Used in place of conventional medicine

Integrative Oncology

- A practice where health care practitioners and patient work together to combine conventional medical treatments and CAM modalities
- Provides a collaborative holistic approach to health care
 - Considers body, mind, soul, and spirit

Prevalence CAM Use in US

General Population
- 62% adults have used some form of CAM therapy during the previous 12 months
- Spans all ethnic backgrounds
- Greatest use if hospitalized in last year, former smoker, female, higher education levels

Oncology Populations
- 25-80% adults (studies since 2000)
- 40-70% are not reporting use of CAM to their health care practitioners

Major Types of CAM

- Alternative medicine systems
- Energy therapies
 - Including biofield and electro-magnetic-based therapies
- Exercise therapies
 - Formerly movement therapies
- Manipulative and body-based methods
- Mind-body interventions
- Nutritional therapies
- Pharmacologic and biologic treatments
 - Including subcategories of complex natural products
- Spiritual therapies
Oncology Nursing Responsibilities

- Evaluate personal & professional beliefs re: use of complementary & alternative therapies
 - Recognize how own values can affect patient care
 - Establish a collaborative relationship with patients
- Assess patients for use of CAM with each contact
 - Side effects or changes in patients condition at each appointment
- Assist with locating reliable, evidence-based information and resources

Oncology Nursing Responsibilities

- Understand and appropriately utilize terms (complementary, alternative, integrative therapies)
- Promote integrated education with other health disciplines
- Awareness of therapies that potentially can interfere with the outcome of other cancer treatments

Questions for Patients to Ask

- Does the provider believe in this treatment because he/she has seen benefits with similar patients?
 - If so, would it be possible to speak to some of these patients?
- How will you know that the therapy is working or not working?
- Are there potential side effects?
- Is the provider willing to communicate with the patient’s primary care physician?

Questions for Patients

- Can this treatment:
 - Support the immune system or other systems?
 - Counteract the cancer?
 - Enable the conventional treatment to work better?
 - Relieve symptoms or side effects?
- Have results of this treatment been published in any recognized medical journals?
- Can the provider give you any references published by others?

Adapted from American Cancer Society and Eisenberg, D. Recommendations to MD's on Counseling Patients' Use of Alternative Medicine, Annals of Internal Medicine, 127(1): 61-69.
Resources

- American Cancer Society/Complementary and Alternative Therapies
 - www.cancer.org/Treatment/TreatmentsandSideEffects/ComplementaryandAlternativeMedicine
- Society of Integrative Oncology
 - www.integrativeonc.org
- National Center for Complementary and Alternative Medicine (NCCAM)

Resources

- Medline Plus: Cancer Alternative Therapies
- MD Anderson Cancer Center: Complementary/Integrative Medicine
 - www.mdanderson.org/education-and-research/resources-for-professionals/clinical-tools-and-resources/cimer/index.html
- Memorial Sloan Kettering Cancer Information About Herbs, Botanicals, & other Products