Overview
Blood and Marrow Transplantation and Cellular Immunotherapy

Lenise Taylor, RN, MN, AOCNS, BMTCN
BMT/Immunotherapy Clinical Nurse Specialist
Seattle Cancer Care Alliance
University of Washington Medical Center
ltaylor@seattlecca.org

Pluripotent Stem Cell
- Progenitor of all blood cells, "uncommitted"
- Asynchronous division
- Self renewing
- Location
 - Marrow
 - Peripheral Blood
 - Umbilical Cord Blood
- Migratory/homing properties
 - Cord Blood takes longer to "home"

Indications for BMT
- Malignant diseases:
 - Acute and Chronic Leukemia
 - Hodgkin’s and Non-Hodgkin’s lymphoma
 - Myelodysplastic Syndromes
 - Multiple Myeloma
 - Amyloidosis
 - Selected solid tumors
 - Breast (rare)
 - Renal cell
 - Germ cell
 - Primary CNS
 - Neuroblastoma
- Non-malignant diseases:
 - Hematologic Disorders
 - Aplastic Anemia
 - Fanconi’s Anemia
 - Sickle Cell
 - Thalassemia
 - Congenital immunodeficiencies
 - SCID
 - Wiskott Aldrich Syndrome
 - Inborn Errors of Metabolism
 - Hurler’s Syndrome
 - Guacher Disease
 - Autoimmune Diseases
 - Systemic Sclerosis
 - Multiple Sclerosis

Stem Cell Sources

<table>
<thead>
<tr>
<th>stem cell source</th>
<th>advantages</th>
<th>disadvantages</th>
</tr>
</thead>
</table>
| Bone Marrow | Abundance of stem cells in BM
| | Lower rate of infections days = 100 to 365 | Anesthesia risk for donor
| | Post-operative pain for donor |
| Peripheral Blood | Faster neutrophil and platelet recovery
| | Faster immune reconstitution
| | Reduced treatment-related mortality
| | Lower rate of infections to day = 100
| | More GVL effect than BM or UCB |
| | Easier collection | Bone pain for donor
| | Slightly higher risk of GVL |
| Umbilical Cord Blood | More quickly available
| | Less risk of GVL
| | More "matches" | Slightly higher rate of early mortality
| | Cannot obtain more cells from donor |
Theory behind Therapy: Autologous

- **Autologous/Syngeneic:**
 - Lethal doses of chemotherapy/radiation therapy if patient not supported
 - Patient’s own stem cells “rescue” the ablated marrow
 - Cure is chemotherapy/radiation, stem cells are supportive care
 - Patient does not require immunosuppression as Graft vs Host disease does not occur

Autologous Process

- Mobilization chemotherapy to collect cells
 - Standard chemotherapy + high dose filgrastim
- “Conditioning” chemotherapy at least 1 month later
- Infusion of stem cells
- Monitor for infection and “engraftment”
- Discharge to primary provider about Day +30

Theory behind Therapy: Allogeneic

Myeloablative:

- Lethal doses of chemotherapy/radiation if patient not supported
- Donor stem cells “rescue” the ablated marrow and provide a new immune system for a graft versus tumor effect
- Cure is both chemotherapy/radiation and stem cells and graft vs tumor effect

Nonmyeloablative:

- Lower doses of chemotherapy/radiation
- Cure is the stem cells and graft vs tumor effect, chemotherapy eliminates microscopic disease
- Also called Mixed Chimerism, Mini, Reduced Intensity
Theory behind Therapy: Allogeneic

- **Immunosuppression**
 - Cyclosporine, tacrolimus, Mycophenolate mofetil
 - Required to prevent Graft vs. Host Disease
 - NonMyeloablative and Haploidentical BMT will receive dual immunosuppression
 - NonMyeloablative: Cyclosporine/Tacrolimus and MMF
 - Haplo: Cyclosporine/Tacrolimus, MMF and Cyclophosphamide post transplant
- **Immunosuppression taper:**
 - Begins about Day +80 depending on BMT type
 - Stopped if GVHD symptoms occur
 - Eventually taper completely

Allogeneic Process

- Identify donor
- “Conditioning” chemotherapy for patient
- Filgrastim “mobilization” for donor
- Infusion of HPC
- Monitor for infection, symptoms of GVHD
- Discharge to primary provider about Day +100-120 depending on BMT type
Conditioning Therapy

- Preparing the body for Hematopoietic Cell Infusion
- Chemotherapy
 - Dosed based on body weight, not body surface area
 - Side effects intensified due to much higher doses
- Radiation Therapy
 - Total Body Irradiation (TBI)
 - Radiation-tagged monoclonal antibodies (I-131, Y-90)
- Starts 3-9 days prior to BMT infusion

Infusion of Stem Cells (HPC)

- Infusion can occur inpatient or outpatient
- Infused like a blood product
- Side effects similar to blood products
 - Pre-medicate if required with blood products
 - *Exception*: Cryopreserved cells (autologous products and cord blood units)
 - Hypersensitivity to DMSO preservative
 - Red cell lysis from freezing

Acute Complications

- Pancytopenia
- Infection
- Mucositis
- Acute Graft vs Host disease
 - Allogeneic recipients only

Infection Prevention

- Avoid ill people and crowds
- Avoid people who have received live vaccines
- No flowers in vases, planting, or decorative moss in plants
- No vacuuming or dusting
- Immunocompromised, NOT neutropenic, diet
 - Fresh fruits/vegetables okay
 - NO
 - Deli meats
 - Moldy cheeses, pepper jack cheese, mexican soft cheeses
 - Uncooked tofu, meat or seafood
 - Chili peppers
 - Miso
 - unpasteurized juices
Acute Graft vs Host disease:

Allogeneic
- An immunologic reaction to the transplanted HPCs classically occurring in the first 100 days post BMT involving the **skin**, **liver**, and **gut**.
- GVHD is one of the most frequent complications after allogeneic BMT.
- Incidence 30-70% in matched transplants.
- Major cause of morbidity and mortality after BMT.
- Mortality (direct or indirect) can reach 50%.

aGvHD

Three-step process

Acute GVHD Symptoms
- **Skin**: Maculopapular rash
- **Gut**:
 - Upper GI: Nausea and vomiting, early satiety
 - Lower GI: Diarrhea
- **Liver**: Elevated bilirubin, cholestasis
Long Term Complications: Infection
- Prolonged neutropenia and immunosuppression greatest risk
- Bacterial
- Fungal
- Viral
 - HSV
 - VZV (shingles)
 - Cytomegalovirus (CMV): may require weekly monitoring for CMV titers depending on BMT source or type
- Includes viruses previously vaccinated against: revaccinate patient 1 year after BMT or after off all immunosuppression

Long-Term Complications: Auto and Allo
- Neurologic
 - Learning disabilities
 - Cognitive dysfunction
- Endocrine
 - Diabetes
 - Thyroid
- Sexual
 - decreased libido
 - delayed puberty
- Fertility
- Emotional

- Renal/Urinary
- Dental
 - Decreased salivary production
 - Gingivitis, Caries
- Relapse
- New malignancy
- Pulmonary
 - Pulmonary fibrosis
 - Bronchiolitis Obliterans
- Cardiac
 - Hypercholesteremia
 - CHF
 - Cataracts

Long-Term Complications: Allo
- Chronic GVHD
 - Skin
 - Liver
 - Gut
 - Oral
 - Ocular
 - Genital
 - Lung
 - Joints/Fascia
- Requires long term immunosuppression
- Skeletal (due to cGVHD)
 - Osteoporosis and osteopenia
 - Avascular necrosis

BMT Outcomes
- Full recovery from BMT
 - Complete remission
 - No long-term complications
 - life returns to normal
 - Few long-term complications
 - “new normal”
 - Multiple long-term complications
 - Poor QOL
 - Death
 - Relapse of Disease
 - Death
 - Partial recovery from BMT, death
New Frontiers in Research: Immune Effector Cells (IEC)

- BMT is the predecessor of current explorations in IEC
 - T-cells are non-specific in stem cell products

- Current Investigations: Tumor specific T-cells are collected, manipulated, and infused to “seek and destroy” cancer cells

- Commercially available products:
 - Kymriah: ALL for pediatric/adult < 25 years or subset DLCBC Lymphoma
 - Yescarta: subset of DLCBC Lymphoma adults

Cellular Immunotherapy

- Immunotherapy: Enhancing the immune response
 - Augment immune response externally: IL-2, interferon
 - Modify T cell response

- TIL: Tumor Infiltrating Lymphocytes
 - Lymphocytes harvested from a tumor and expanded ex vivo
 - Not subject to normal immune response such as T regulation
 - May “see” cells that have mutated
 - May have other medication immunotherapies administered to augment response

- TCR/CAR: T cell receptor
 - Specific to CD antigens
 - Modified using lente or retro viruses

Key Principles of IEC

- Re-infused T-cells are a “living” therapy that can expand and act on cancer cells over time

- Targeted therapy usually derived from the patient’s own immune system

- Lymphodepletion prior to infusion improves persistence of T-cells

Preparing CAR T cells

- Lymphodepletion
 - T cell expansion
 - CAR expression
CAR T-cell Therapy: Cytokine Release Syndrome and Neurotoxicity

Background

- Genetically modified T-cells that express a chimeric antigen receptor (CAR) that bind to a target antigen on a tumor cell
- When the T cell CAR binds to the target antigen, it causes activation of the receptor and T cell signaling which promotes target (tumor) cell killing and T cell proliferation.
- During this process, a large variety of cytokines may be released from the T cells and accessory cells that
 - activate the immune system
 - increase number of immune cells (e.g., macrophage) and
 - support further CAR T cell expansion and anti-tumor activity.

Cytokine Release Syndrome (CRS)

- May result in fevers, cardiopulmonary instability, hematologic toxicity, and multiorgan failure
- Occurs in 1-21 days following administration of CAR T-cell product
- Risk factors:
 - higher disease burden
 - greater proliferation/expansion of the CAR-T cells,
 - higher dose level of infused cellular product,
 - concurrent infection or underlying inflammatory state

Cytokine Release Syndrome: Common Symptoms and laboratory findings
** CRS: Grading (ASTCT, 2018)**

- If a commercial T-cell product (Yescarta or Kymriah) was administered, package insert guidelines for management of CRS should be considered.
- Tocilizumab (IL-6 receptor agonist) is effective in reducing CRS symptoms.

** CRS: Additional Supportive Care**

- Constitutional symptoms, including fevers:
 - Work up for infectious causes and initiate antimicrobial therapy.
 - Acetaminophen may be used for fever management.
- Systemic steroids as needed.
- Cardiovascular management:
 - Aggressive intravenous bolus and vasoactive support.
- Coagulopathy management:
 - PRBC transfusion, platelet and cryoprecipitate support as needed.
- Respiratory symptoms:
 - Supplemental oxygen as needed for hypoxemia.
- Neurological checks every 4 hours with first sign of CRS.
 - Avoid medications that could lower seizure threshold. (i.e. meperidine for rigors).

Neurological Toxicity (NT):

- May result in encephalopathy, seizures or (rare) cerebral edema.
- May occur 1 day up to 8 weeks post infusion of CAR T-cell product.
- Patients must stay close to center for 30 days post administration.
- Patients should not drive for 8 weeks after infusion.
Neurotoxicity: Additional Supportive Care

- Neurological assessment every 4 hours with first sign of NT.
 - Avoid medications that could lower seizure threshold. (i.e. meperidine for rigors).
- Avoid medications which could alter mental status (i.e. benzodiazepines, sedatives, etc.)
- Steroids are treatment of choice for isolated Neurotoxicity
- Tocilizumab should not be given in the absence of Cytokine Release Syndrome.

Resources

- American Cancer Society [www.cancer.org], select “Treatment & Support > Treatment Types
- Center for International Blood & Marrow Transplant Research (CIBMTR): [www.cibmtr.org/referencecenter/slidesreports/usstats/pages]
- Fred Hutch Long Term Follow Up Guidelines: [https://www.fredhutch.org/en/treatment/long-term-follow-up/information-for-physicians.html]
- Leukemia and Lymphoma Society [www.lls.org]
- National Cancer Institute [www.cancer.gov], select “About Cancer > Treatments”
- National Marrow Donor Program [www.bethematch.org]

References